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Abstract

An automated peak picking strategy is presented where several peak sets with different signal-to-noise levels are combined to form a more
reliable statement on the protein identity. The strategy is compared against both manual peak picking and industry standard automated peak
picking on a set of mass spectra obtained after tryptic in gel digestion of 2D-gel samples from human fetal fibroblasts. The set of spectra
contain samples ranging from strong to weak spectra, and the proposed multiple-scale method is shown to be much better on weak spectra
than the industry standard method and a human operator, and equal in performance to these on strong and medium strong spectra. It is alsc
demonstrated that peak sets selected by a human operator display a considerable variability and that it is impossible to speak of a single “true”
peak set for a given spectrum. The described multiple-scale strategy both avoids time-consuming parameter tuning and exceeds the humar
operator in protein identification efficiency. The strategy therefore promises reliable automated user-independent protein identification using
peptide mass fingerprints.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction with expected peptide masses from a dataljgs&0] but
most common today seem to be MASC@d], ProFound
Mass spectrometry combined with database searching[7] and MSFit[8].
is today the preferred method for protein identification.  The success of a PMF experiment depends on several fac-
The standard experiment is to separate the proteins, e.g. bytors. The noise level in the spectrum, the mass accuracy, the
2D-gel electrophoresis, digest the proteins with a highly spe- amount and purity of the sample, the number of proteins in
cific enzyme, measure the masses of the peptide fragmentshe sample, possible post-translational modifications, algo-
with a mass spectrometer (typically a MALDI-TOF mass rithm accuracy, and (to a considerable extent) operator skill
spectrometer) and then compare the peptide mono-isotopicand experience. A human operator is generally better than
masses with expected mono-isotopic masses from a databassoftware algorithms at judging what is an interesting low
(protein or DNA database). This approach is known as pep- intensity mono-isotopic peak, as opposed to a noise peak,
tide mass fingerprinting (PMF)1-4]. Several algorithms  and what is a reasonable identity given mass deviations and
exist for comparing the observed mono-isotopic massessequence coverage. Automated mono-isotopic peak detec-
tion algorithms, e.g[11-14] work excellently on strong
spectra but their performance is often insufficient on weak

* Corresponding author. Tek:46-35-16-74-77; faxi-46-35-12-03-48.  SPectra. This is unsatisfying since strong spectra are of-
E-mail addressdenni@ide.hh.se (T. Régnvaldsson). ten produced by high abundant proteins, which typically
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represent the bulk of the cell activity. Low abundance pro- MS ‘ . Identify
teins, on the other hand, produce weak spectra and ofter] Samrle Pick Filter g, protein | Analyze

i X X prep. peaks peaks results
represent the interesting unknown processes. The typica MALDI-TOF Mascot
situation in a laboratory today is to have human operators B—dm'.— -Stroplg
double-check the software results and the protein identities oo “Weak
[15]. These operators also spend considerable time varying [ Mtie peak fsts |

the [_)aramete_rs for the peak detection S_Oftware' Sea'_’Chm_g_forFig. 1. Overview of the experiments described in the paper. A typical
“‘optimal” settings of parameters that yield the best identifi- peptide mass fingerprinting project was studied and our proposed multiple
cation results. An often overlooked but fundamental problem peak set method was compared to both automated and manual strategies
in this process is that a human operator is a subjective expertfor selecting the mono-isotopic peak lists. The final protein identification
who makes judgments; there will always be borderline Casesresults wgre then analyzed for st.rong, medium, and wee}k spectra to see
where the judgment can go either way. Two different oper- the benefits of each peak detection strategy for these different spectrum
classes.
ators will not pick identical peak sets, unless they are asked
to pick only very few and strong peaks, and one operator can
be more successful than another at identifying proteins from 2. Experimental details
the same spectra. Also, a human operator’s opinion on which
peaks to pick may change with time, as demonstrated in this2-1. Sample preparation and instrumentation
aper.
P 'r[?h|s paper describes a different approach' We aban- Human fibroblasts were derived from the |Ung cell line
don the idea of an Opt|ma| set of parameters for a peak HFL-1, obtained from American Tissue Culture Collection
picking algorithm and accept that mono-isotopic peak (ATCC). The samples were plated a62< 10° cells per
picking is by nature a statistical process. It then follows Well in six-well plates and grown to confluence for one
that protein identification should be based on several peakWeek. S-35 metabolic labeling was performed usingii00
sets, which represent different parameter settings for the S35-methionine per well in the presence of 10ng/mL of
peak p|Ck|ng a|gorithm, rather than a Sing|e peak set. TGF'B, or VehiCIe, and incubated for 20 h. The cells were
We therefore combine information extracted at different then lysed in 50Q.L of 8M urea and 2% CHAPS. The
signal-to-noise ratio levels in the spectrum into a com- amount of radioactivity in each gel spot was extremely low
posite judgment about the protein identity. In this way we and did not impose any hazards or safety regulations related
achieve both high sensitivity on weak spectra, even bettert0 the MS analysis. The small amount of S-35 in the labeled
than the human operator, and avoid the dependence orproteins could not be detected by MS and the mass shift of
the human operator. The proposed method is comparedmethionine containing peptides was insignificant.
with manual peak picking, software-supported manual Protein separation was done using 2D-gel electrophoresis
peak picking (the industrial standard) and two fully auto- With non-linear Immobiline strips with alvindow of 3—-10.
mated peak detection Strategies that do not combine peakThe Strip was, after isoelectric fOCUSing, treated with dithio-
sets. threitol and then with iodoacetamide to reduce and alky-
We have mostly used the Pepex peak picking software in 1ate the proteins before running the second electrophoresis
our experiments because it was by design very simple to Step. Gel pieces (2-3mm in diameter) were cut out, washed
script and automate for the multiple peak sets in this study. With 25mM ammonium bicarbonate and acetonitrile, and
The results do not, however, depend on the specific peaktreated with porcine trypsin at 37 C overnight. Everything
picking software used and similar effects would probably Was completed according to standard protocols in the liter-
have been observed with any other high quality peak picking ature[16,17}
software. Mass spectra were acquired on a Voyager DE-Pro
We demonstrate our method on spectra that were ac-MALDI-TOF instrument (Applied Biosystems) operated
quired during an investigation of an airway wall remodeling in reflector mode usingr-cyano-4-hydroxycinnamic acid
process using human fibroblasts that had been treated witHmatrix. Spectra were internally calibrated using the trypsin
inflammatory cytokines. These samples had been metaboli-autodigest peaks atVz 842.51 and 2211.10 as reference
cally labeled with S-35 to allow detection of newly synthe- Masses.
sized proteins that were believed to also be low abundance

proteins. 2.2. Spectrum grouping
The data generation and analysis presented in this paper
is outlined inFig. 1 A set of 38 spectra was carefully selected to represent

different protein sample amounts. The spectra were di-
vided into three groups, designated “strong”, “medium”,
and “weak”, based on the intensity of the “unknown pep-

1 Fully functional trial versions of the Pepex software are available tid€ peaks” relative to the trypsin autodigestion peak at
from Halmstad Universityhttp://www.hh.se/staff/bioinf m/z 2211. Spectra where more than 20% of the peaks
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(remaining after background peaks had been removed) had  relative peak intensity threshold, a signal/noise thresh-
a higher intensity than the peakmatz 2211 were classified old of 1.5, and a noise density of 0.0005.

as “strong” (9 spectra); “medium” spectra were those where o

fewer than 20%, but more than 10%, of the peaks had a 1hese four user-dependent peak picking methods
higher intensity than thevz 2211 peak (11 spectra); “weak” were selected to provide relevant comparisons for the

spectra were those where fewer than 10% of the peaks had!Se-independent peak picking. The two manual methods,
a higher intensity than theyvz 2211 peak (18 spectra). (@) and (b), represent how well a human operator can do
when being very thorough (the unbiased peak picking)

and when working quickly with the aid of a peak picking
software (the biased peak picking). The two “automated”
methods, (¢) and (d), represent how good a specific peak
picking tool can be at automatic peak picking when tuned
by human operators. It is important to note, however, that
both human operators who tuned the peak picking software
'were aware of a “true” answer (the biased and the unbi-
ased manually picked peak lists) and the results with these
automatically picked peak lists are therefore likely to be
somewhat positively biased.

3. Algorithmic details
3.1. User-dependent peak picking with single peak lists

Four user-dependent peak picking strategies were tried
two manual and two “automatic” (but manually tuned).

(&) The first was an unbiased manual peak picking that was
done without the aid of any peak-detection software,
since peak-detection software will bias the decisions of a o . o
human operator. The spectra were plotted with a graph- 3-2- Identifying and removing contamination peaks
ical display tool and two operators scanned through o ) -
the spectra and marked the peaks that corresponded to Contamination peaks were identified and remqvgd before
mono-isotopic peaks. The two operators spent betweenthe peak lists were submitted to Masg#} for protein iden-

20 and 45 min on each spectrum, listing the peaks that tification. All gel pieces included in this study were pro-
they visually deemed to be mono-isotopic peptide peaks. duced at the same time and it was therefore reasonable to

(b) The second was a biased manual peak picking done with€xpect similar contamination in essentially all samples. The
the help of the Voyager 5 Data Explorer software. A contamination peaks were defined as thos.e peaks thqt oc-
third human operator tried different software parameter curred unreasonably often in the spectra, using the algorithm
settings for each spectrum and selected an optimal setdescribed by Levander et 4lL8]: peaks with signal/noise
of parameters for each spectrum. This peak picking was ratios above 1.5 were picked from all 38 spectra and it was
considered typical for a pharmaceutical lab. The oper- noted how often an individual peak occurred. For instance,
ator selected the peak lists by varying the absolute in- If & peak occurred 38 times then it occurreq/38= 100%
tensity parameters for each spectrum and adjusting theOf the time; this was the case for, e.g. the trypsin 842.5Da
parameters to allow detection of small but significant Peak. The number of occurrences for each peak was then
peaks while excluding noise and background peaks. Ad- compared to the chance probability for a peak with the ob-

ditional mass ranges were inserted with different param- Served mass to occur several times in the experiment, based
eter settings when needed. on the distribution of peptide masses in protein databases. If

(c) The third method was an industry standard “automated” the observed number of observations exceeded the chance
peak picking where a human operator selected a sin- Probability by more than two standard deviations, then_the
gle compromise set of parameters for the Voyager 5 observed peak was labeled as a background peak. This re-
Data Explorer software for all 38 spectra (the same sulted in 37 background peaks, many of which matched to
human operator as in the biased manual peak picking (methylated) peptides from pig trypsin and human keratin.
described above). The operator tried several parameter
settings with the Data Explorer software and the best 3.3. Database protein scoring
overall results were achieved using an absolute intensity
peak threshold. The subjectively best (compared to the All user-dependent peak sets were scored against Swiss-
biased manual peak picking) compromise performance Prot, version 31 October 2001, using the Mascot tool from
was achieved using the following settings for all spectra: Matrix Science[6]. The settings for the Mascot searches
use advance settings, set range- tn/z 750-1100 and ~ were: mass tolerance, 50 ppm; missed cleavages, 1; fixed
minimum intensity= 500, set range 2 nvVz1100-3500 modifications, carbamidomethylation of cysteine; variable
and minimum intensity= 200. modifications, methionine oxidation; species, all.

(d) The fourth method was a Pepex “automated” peak pick-
ing. A single set of Pepex parameters was chosen that3.4. Combining results from multiple peak lists
matched the unbiased peak picking, (a) above, as well as
possible. The subjectively, as judged by a human opera- There is no such thing as a “true” peak list: different
tor, best compromise performance was achieved using ahuman experts pick different peak lists and automatic peak
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detection tools pick different peaks depending on the param-38 times so that out-of-sample judgments could be made by
eter settings. It should therefore be a good idea to combinethe perceptron on all the 38 spectra (this procedure is often
results from several users or from several parameter settingsreferred to as leave-one-out cross-validation).
effectively integrating over parameter values so that the The described logistic perceptron method corresponds to
result becomes user-independent (i.e. no human operator i& pattern recognition approach to the protein identification
needed to tune the software). To test this idea, we varied theproblem. The logistic perceptron is trained to recognize the
spectrum noise level estimation and the signal-to-noise ratio characteristics for a correct protein identity when several dif-
of accepted peaks. In the Pepex software this was done byferent peak sets are used. The logistic perceptron is similar,
varying the relative noise density parameter with the two val- but not identical, to the classical logistic regression model
ues (0.0005, 0.001) and the signal-to-noise cut off with the [21], and the logistic perceptron’s output can be interpreted
seven values (1, 1.5, 2, 2.5, 3, 3.5, 4), respectively, yielding as an estimate of the posterior probabifitgorrectk). That
a total of 2x 7 = 14 peak sets for each spectrum. The num- is, the probability that the reported protein identity is cor-
ber of peaks in the peak sets then varied between 0 and 450@ect, given the observation. This output can be further
(after contamination peaks had been removed). These pealprocessed; one can require the estimated probability to be
sets were then submitted individually to the Mascot protein higher than a given threshold, e.g. 0.7. A threshold of 0.5
identification tool and combined using a logistic perceptron was used in the work described here.
[19]. The combined protein identification success was then
compared to the user-dependent peak sets described above.

The logistic perceptron is a single layer neural network 4. Results
with a logistic output unit, i.e. it is a function that takes a

number of input variablesy, xp, . . ., X,, and outputs anum-  4.1. Similarities and differences between user-dependent
bery between 0 and 1. The logistic perceptron’s functional peak lists
form is

Some general observations, illustratedrig. 2, could be
made for manual and “automatic” peak sets. First of all,
whereuvg, v1, v2, ..., vy, are free parameters. the human operator was an inconsistent peak picker and

The logistic perceptron was trained to recognize a cor- the unbiased manual peak sets did not agree completely
rect match and output a high value (i.e. close to 1) for a with the biased peak picking. Furthermore, there were sig-
correct protein identity and a low value (i.e. close to 0) for nificant differences between the peak sets that were picked
an incorrect protein identity. This was done is the following “automatically”.
way. A human expert listed all the correct protein identities  The peaks picked by the operator by manually tuning
(this is described later in this paper) and all other reported Data Explorer (biased peak picking) were compared to peak
protein identities were labeled incorrect. The desired output sets picked by the same individual 2 years earlier on the
for correct (true) protein identities was set to one and the
desired output for incorrect (false) protein identities was set
to zero. The perceptron then received information about the
size of the database protein, the Mascot scores for the 14
peak sets, and the query lengths for the 14 peak sets (a tota
of 29 inputs). That is, the input variables whexg:is the Biased Jy '
size of matched database proteip,; the Mascot score for ~ manuall mdnual Il ?,:2232. I
peak list numbek, andx; 15 the number of peaks in peak
list numberk. The protein identities reported by Mascot on
37 of the 38 spectra were then used to train the perceptron,
meaning that the parametarg v1, vo, ..., v, were tuned
so that the sum square error

E="[yxm)—dm)]

y(x) = [1 + expvo + vix1 + vaxg + - - - + VX)) 7t

was minimized §(n) denotes the desired output value, zero
or one, for inputse(n)). The resilient propagation method

[20] with 300 weight updates was used for the minimiza-
tion; this method is similar to the more commonly known
gradient descent method. The trained perceptron was ther‘Fig' 2. Venn diagrams illustrating the agreement and differences between

. . o the different peak sets. The “biased manual 1" and “biased manual II”
used to categorize the reported protein identities on the 38.threfers to the two different occasions when the biased manual peak picking

spectrum, which it had not seen during training, as being €i- was done; “biased manual I" is the older of the peak sets. The peak sets
ther correct or incorrect. This procedure was then repeatedare explained in the text.

Biased
manual Il - ased
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same spectra, also using Data Explorer. The new peak lists Cofectiatid Incomed! peaks Purly s eMiciehcy
were on average about twice as big as the old ones but the s L] Incorrect I Efficiency

. Il Correct 1 [ Purity
smaller peak lists were not complete subsets of the larger
peak lists. On average, only 56% of the new peaks matched%60 o8
the old peaks for the same spectrum and 92% of the smallers e
peak sets matched the larger peak sets for the same spectr‘z20 o4
Thus, the operator disagreed with himself on at least one L
out of every 10 peaks even though the same peak detectior o—- > 3 . 0 5 3 "
software was used on both occasions. This was because th signalincise signalinoise
operator had changed his opinion on how peaks should be 1
plcked._The operator had _prlorltlzed avmdmg_false pos!tlve val &4t o8 iyt
peaks in the 2-year-old lists, whereas priority was given o e e
to avoiding false negatives in the new peak lists; a “false z°¢ + 2°° P
positive” peak denotes a peak that is not in the spectrum® . ¥ T4 -
but that is nevertheless picked by the software, and a “false & 5% o
negative” peak is a peak that is in the spectrum but that is Pepex vs. manual Pepex vs. human expert
missed by the software. Both priorities are reasonable and % o2 o2 o5 os 1 % 02 o4 05 08 1

Efficiency Efficiency

the observed difference between the peak lists illustrates how
subjective manual peak picking is. Fig. 3. lllustration of the statistical nature of peak detection. The “manual”
The unbiased manual peak lists contained on averagepeak picking referred to is the unbiased manual peak list, and the “human
about twice as many peaks as the biased manual peak |istsgxpert" is the biased manual peak list. Each crogs in the lower gr_aphs
On average 43% of the unbiased manual peaks agreed wit{?" s 1 o1 ek st (one paraneter setng for e peak kg
the biased peaks, and 81% of the biased peaks agreed Wityest compromise set of parameters were used for the Pepex peak picking
the unbiased peaks. Thus, the persons selecting peaks in aflgorithm. Each pair of purity/efficiency bars in the upper right graph
unbiased way disagreed with the operator who used Datacorresponds to one cross in the lower left graph (the bar graph only shows
Explorer on at least two in every 10 peaks. some of the p_eak‘ set‘s, in‘ order to make the bar graph easier to read).
The peak sets picked “automatically” by the Voyager 5 Ve &xplanation is given in the text.
Data Explorer software were on average about half the size
of the biased manual peak lists selected by the operator.pure but inefficient to a peak set that is impure but efficient.
Almost all peaks picked “automatically” by Data Explorer However, there is no rule that tells which peak set is bet-
agreed with the operator, which could be explained by the ter than the others and peak picking is therefore a process
fact that the operator used Data Explorer to select peaks.where one should use more than one parameter setting to
It is clear that the operator preferred a conservative param-get stable and reliable results. The top left paneFig. 3
eter setting for Data Explorer, leading to small peak sets. shows the number of correctly (i.e. agreeing with the man-
The parameter setting for Pepex was, in comparison, muchually picked peaks) and incorrectly (i.e. not agreeing with
less conservative and the peak lists were about 50% largerthe manually picked peaks) picked peaks in a single spec-
than the peak lists selected by the operator but smaller thantrum as a function of a user specified signal-to-noise thresh-
the fully manual peak sets. On average, about 80% of theold. A high signal-to-noise threshold means making few
operator’s peaks agreed with the Pepex peaks. The situatiorfmistakes” but also missing potentially informative peaks.

is illustrated with Venn diagrams iRig. 2
The subjectivity and uncertainty of peak picking is fur-
ther illustrated inFig. 3, where the different peak sets

The top right panel ifrig. 3shows the corresponding purity
and efficiency numbers (the unbiased manual peak list con-
tained 87 peaks in this case). The lower left pandtion 3

are compared to a biased and an unbiased peak set usshows the (efficiency, purity) pairs when a correct peak is
ing the efficiency and purity statistics. These are defined defined by the unbiased manual peak set. The lower right
as efficiency= (number of agreeing peaks)/(number of panelinFig. 3shows the (efficiency, purity) pairs plotted in
peaks picked manually) and purity (number of agreeing  an efficiency—purity graph when a correct peak is defined by
peaks)/(number of peaks picked by automated software).the biased manual peak set. The filled square marks the par-
If the software finds all the peaks that were picked manu- ticular peak set that was used in the automated Pepex peak
ally, then the efficiency equals one. If the software pick no picking. The fixed parameters for Pepex were selected to be
peaks that disagree with the manual peak list, then the pu-as close (on average for all spectra) as possible to the upper
rity equals one. In data mining literature, efficiency is often right corner when comparing against the unbiased manual
referred to as “recall” and purity as “precision”. In medi- peak set.
cal literature, efficiency is called “sensitivity” and purity is It should be evident fronfrig. 3that there exists no such
called “positive predictive value”. thing as an objectively optimal set of parameters. The op-
Fig. 3 (lower part) illustrates how the operator has the timality of parameters depends very much on who defines
freedom to choose anything from a small peak set that is the correct peaks.
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Strong spectra (9) Medium spectia (1) human origin, and the user-dependent “automatic” Pepex
peak sets (d) produced no false hit. These “automatic” re-
sults are likely to be overly optimistic since the parameters
of the peak picking algorithms were set based on knowledge

from the manual peak picking.
¢ . The logistic perceptron (Pc) gave six false hits. One of
z 2 the false hits (for a spectrum classified as “strong”) was on
0 0
(@ (b) () (d) Pc

Hl True
10t | ] False 10

Identified
o
Identified
[+23

@ o (0 (@ Pc an extremely short protein (26 residues) of non-human ori-

gin. In one case, the perceptron gave as top hit a protein

12 bl s that was not reported as a significant hit by Mascot when
it E ol 30 5 e any of the other peak sets were used. This protein (human

. 25 HSP 90) was, however, judged as correct by the experi-

3 g g enced operator based on molecular weightapd peptide

S 4 I I I I ‘ z15 | I I | | mass precision. In this particular case, the perceptron also
10 reported three other proteins of non-human origin as hits

? 5 (i.e. this spectrum accounted for half of the false hits pro-
@ & © @ Pe @ ©» © @ P duced by the perceptron). If the decision threshold for the

. o _ _ perceptron was increased from 0.5 to 0.7 then the number
Fig. 4. The protein identification results when using the different peak .
detection strategies and weighting strategies. The “Pc” label refers to F’f falgg hits deqeased by four and the number of correctly
the logistic perceptron approach where scores from several peak lists areidentified proteins decreased by only one. The perceptron
combined. The other labels refer to the listing of different peak picking was thus more uncertain about false hits than about correct
strategies in the text. The results are discussed in more detail in the text. hjts.
The sequence coverage varied between the peak sets. The
average sequence coverage with the automatic Data Ex-
4.2. Protein identification efficiency plorer peak set was 25%. The average sequence coverage
with the automatic Pepex peak set was 32%. The largest se-
The number of correct and false protein identifications quence coverage was achieved with the logistic perceptron
was compared for the different peak picking strategies and method; the average sequence coverage was here 45%, 1.5
for the strategy where results were combined. A protein times the average sequence coverage achieved by the human
identity was deemed to be correct by looking at the size operator (30%). This is of course not surprising since the
and p of the protein compared to the spot position on the multiple peak lists method includes some very large peak
gel, the mass error of matched peaks versus theoretical peplists.
tide masses, the protein being of human origin, and the se- The time complexity varied much between methods. For
guence coverage of the protein by the matching peptides.the biased manual peak picking the operator spent about
All these different aspects were judged subjectively by an 10-15 min per spectrum. The unbiased manual peak picking
experienced operator. A false hit was defined as a reportedtook 20—45 min per spectrum. The automated Pepex runs
significant identity that deviated from one or more of the took about 3-5s per spectrum (excluding the time devoted
expected values mentioned above. Proteins with more thanto parameter tuning) and the automated Data Explorer took
1600 residues were ignored, because of the poor databasenly a few seconds per spectrum (again excluding the time
statistics for large proteins, and obvious contamination pro- for parameter tuning). The Mascot runs took 5-10 s per peak
teins (keratins) were ignored. list. A repeated search with 14 peak sets, using Pepex com-
The protein identification results are summarized in bined with Mascot, took about 2 min per spectrum, without
Fig. 4. The best “automatic” result was achieved using the the need for any manual parameter tuning.
user-dependent Pepex peak set and the worst “automatic”
result was achieved with the user-dependent Data Explorer
peak set. This does probably not reflect any quality differ- 5. Conclusions
ence between the peak picking algorithms. It is rather a
consequence of how the parameters were set for the two We have suggested a method for combining results from
tools. The difference in result illustrates how difficult/risky several peak sets in peptide mass fingerprint experiments.
it is to manually tune peak picking software and select a The motivation being that one should not be satisfied with
single set of parameters. just a single parameter setting for a peak picking software
The unbiased manual peak sets (a) produced two falsebut combine information from several peak sets that con-
hits, of which one was of human origin. The biased manual tain information about both strong and weak peaks in the
peak sets (b) produced one false hit, which was a protein spectrum. The suggested method provides completely auto-
of non-human origin. The user-dependent “automatic” Data matic and reproducible peak picking and achieves at least as
Explorer peak sets (c) produced two false hits, none of good protein identification as manual operation by a human
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operator using a commercial peak selection tool. Combining requires no subjective parameter tuning, and it is very suc-

several peak sets in this way removes the arbitrariness ofcessful at identifying proteins. These are all essential prop-

using a single parameter setting for a peak picking software. erties for a high-throughput protein identification method.

This is important since manual tuning of peak detection

software turned out, in our experiments, to produce protein

identification performance that fell anywhere between poor

and excellent. . . . [1] D.J.C. Pappin, P. Hojrup, A.J. Bleasby, Curr. Opin. Biol. 3 (1993)
The largest number of proteins was found using multi- 397,

ple peak sets combined with the logistic perceptron. This [2] M. Mann, P. Hojrup, P. Roepstorff, Biol. Mass Spectrom. 22 (1993)

method even found proteins that had low Mascot score but ~ 338.

where an experienced operator believed the identification [3] FF:eranc]i?ﬁnh:l'anggr?;ggi) ggrafo”v G. Gonnet, Biochem. Biophys.

to. b? correct (albeit at the price of three f.als_e positives); [4] W.J.. Hentze?, TM Billeci, J.T.- Stults, S.C. Wong, C. Grimley, C.

this is remarkable and shows that the logistic perceptron ™ \yatanabe, Proc. Natl. Acad. Sci. U.S.A. 90 (1993) 5011.

was able to make judgments that reflected the human opera- [5] M.R. Wilkins, E. Gasteiger, C.H. Wheeler, I. Lindskog, J.C. Sanchez,

tor. The overall best protein identification, maximizing cor- A. Bairoch, R.D. Appel, M.J. Dunn, D.F. Hochstrasser, Electrophore-

rect hits and minimizing false hits, was achieved with the sis 19 (1998) 3199.

tuned Pepex algorithm. However, this required considerable Z‘SN'zge(rlk;gZ’)%g'sg' Pappin, D-M. Creasy, J.S. Cottrell, Electrophore-

time in the tuning process and the end result is biased; it (7], zhang, B.T. Chait, Anal. Chem. 72 (2000) 2482.

is questionable whether this could be repeated at a differ- [g] k. R Clauser, P. Baker, A.L. Burlingame, Anal. Chem. 71 (1999)

ent laboratory by other people since parameter tuning is so 2871
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