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Abstract

An automated peak picking strategy is presented where several peak sets with different signal-to-noise levels are combined to form a more
reliable statement on the protein identity. The strategy is compared against both manual peak picking and industry standard automated peak
picking on a set of mass spectra obtained after tryptic in gel digestion of 2D-gel samples from human fetal fibroblasts. The set of spectra
contain samples ranging from strong to weak spectra, and the proposed multiple-scale method is shown to be much better on weak spectra
than the industry standard method and a human operator, and equal in performance to these on strong and medium strong spectra. It is also
demonstrated that peak sets selected by a human operator display a considerable variability and that it is impossible to speak of a single “true”
peak set for a given spectrum. The described multiple-scale strategy both avoids time-consuming parameter tuning and exceeds the human
operator in protein identification efficiency. The strategy therefore promises reliable automated user-independent protein identification using
peptide mass fingerprints.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mass spectrometry combined with database searching
is today the preferred method for protein identification.
The standard experiment is to separate the proteins, e.g. by
2D-gel electrophoresis, digest the proteins with a highly spe-
cific enzyme, measure the masses of the peptide fragments
with a mass spectrometer (typically a MALDI-TOF mass
spectrometer) and then compare the peptide mono-isotopic
masses with expected mono-isotopic masses from a database
(protein or DNA database). This approach is known as pep-
tide mass fingerprinting (PMF)[1–4]. Several algorithms
exist for comparing the observed mono-isotopic masses
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with expected peptide masses from a database[5–10] but
most common today seem to be MASCOT[6], ProFound
[7] and MSFit[8].

The success of a PMF experiment depends on several fac-
tors. The noise level in the spectrum, the mass accuracy, the
amount and purity of the sample, the number of proteins in
the sample, possible post-translational modifications, algo-
rithm accuracy, and (to a considerable extent) operator skill
and experience. A human operator is generally better than
software algorithms at judging what is an interesting low
intensity mono-isotopic peak, as opposed to a noise peak,
and what is a reasonable identity given mass deviations and
sequence coverage. Automated mono-isotopic peak detec-
tion algorithms, e.g.[11–14], work excellently on strong
spectra but their performance is often insufficient on weak
spectra. This is unsatisfying since strong spectra are of-
ten produced by high abundant proteins, which typically
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represent the bulk of the cell activity. Low abundance pro-
teins, on the other hand, produce weak spectra and often
represent the interesting unknown processes. The typical
situation in a laboratory today is to have human operators
double-check the software results and the protein identities
[15]. These operators also spend considerable time varying
the parameters for the peak detection software, searching for
“optimal” settings of parameters that yield the best identifi-
cation results. An often overlooked but fundamental problem
in this process is that a human operator is a subjective expert
who makes judgments; there will always be borderline cases
where the judgment can go either way. Two different oper-
ators will not pick identical peak sets, unless they are asked
to pick only very few and strong peaks, and one operator can
be more successful than another at identifying proteins from
the same spectra. Also, a human operator’s opinion on which
peaks to pick may change with time, as demonstrated in this
paper.

This paper describes a different approach. We aban-
don the idea of an optimal set of parameters for a peak
picking algorithm and accept that mono-isotopic peak
picking is by nature a statistical process. It then follows
that protein identification should be based on several peak
sets, which represent different parameter settings for the
peak picking algorithm, rather than a single peak set.
We therefore combine information extracted at different
signal-to-noise ratio levels in the spectrum into a com-
posite judgment about the protein identity. In this way we
achieve both high sensitivity on weak spectra, even better
than the human operator, and avoid the dependence on
the human operator. The proposed method is compared
with manual peak picking, software-supported manual
peak picking (the industrial standard) and two fully auto-
mated peak detection strategies that do not combine peak
sets.

We have mostly used the Pepex peak picking software in
our experiments because it was by design very simple to
script and automate for the multiple peak sets in this study.1

The results do not, however, depend on the specific peak
picking software used and similar effects would probably
have been observed with any other high quality peak picking
software.

We demonstrate our method on spectra that were ac-
quired during an investigation of an airway wall remodeling
process using human fibroblasts that had been treated with
inflammatory cytokines. These samples had been metaboli-
cally labeled with S-35 to allow detection of newly synthe-
sized proteins that were believed to also be low abundance
proteins.

The data generation and analysis presented in this paper
is outlined inFig. 1.

1 Fully functional trial versions of the Pepex software are available
from Halmstad Universityhttp://www.hh.se/staff/bioinf.

Fig. 1. Overview of the experiments described in the paper. A typical
peptide mass fingerprinting project was studied and our proposed multiple
peak set method was compared to both automated and manual strategies
for selecting the mono-isotopic peak lists. The final protein identification
results were then analyzed for strong, medium, and weak spectra to see
the benefits of each peak detection strategy for these different spectrum
classes.

2. Experimental details

2.1. Sample preparation and instrumentation

Human fibroblasts were derived from the lung cell line
HFL-1, obtained from American Tissue Culture Collection
(ATCC). The samples were plated at 2.5 × 105 cells per
well in six-well plates and grown to confluence for one
week. S-35 metabolic labeling was performed using 100�Ci
S35-methionine per well in the presence of 10 ng/mL of
TGF-�, or vehicle, and incubated for 20 h. The cells were
then lysed in 500�L of 8 M urea and 2% CHAPS. The
amount of radioactivity in each gel spot was extremely low
and did not impose any hazards or safety regulations related
to the MS analysis. The small amount of S-35 in the labeled
proteins could not be detected by MS and the mass shift of
methionine containing peptides was insignificant.

Protein separation was done using 2D-gel electrophoresis
with non-linear Immobiline strips with a pI window of 3–10.
The strip was, after isoelectric focusing, treated with dithio-
threitol and then with iodoacetamide to reduce and alky-
late the proteins before running the second electrophoresis
step. Gel pieces (2–3 mm in diameter) were cut out, washed
with 25 mM ammonium bicarbonate and acetonitrile, and
treated with porcine trypsin at 37 C overnight. Everything
was completed according to standard protocols in the liter-
ature[16,17].

Mass spectra were acquired on a Voyager DE-Pro
MALDI-TOF instrument (Applied Biosystems) operated
in reflector mode using�-cyano-4-hydroxycinnamic acid
matrix. Spectra were internally calibrated using the trypsin
autodigest peaks atm/z 842.51 and 2211.10 as reference
masses.

2.2. Spectrum grouping

A set of 38 spectra was carefully selected to represent
different protein sample amounts. The spectra were di-
vided into three groups, designated “strong”, “medium”,
and “weak”, based on the intensity of the “unknown pep-
tide peaks” relative to the trypsin autodigestion peak at
m/z 2211. Spectra where more than 20% of the peaks

http://www.hh.se/staff/bioinf
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(remaining after background peaks had been removed) had
a higher intensity than the peak atm/z 2211 were classified
as “strong” (9 spectra); “medium” spectra were those where
fewer than 20%, but more than 10%, of the peaks had a
higher intensity than them/z2211 peak (11 spectra); “weak”
spectra were those where fewer than 10% of the peaks had
a higher intensity than them/z 2211 peak (18 spectra).

3. Algorithmic details

3.1. User-dependent peak picking with single peak lists

Four user-dependent peak picking strategies were tried,
two manual and two “automatic” (but manually tuned).

(a) The first was an unbiased manual peak picking that was
done without the aid of any peak-detection software,
since peak-detection software will bias the decisions of a
human operator. The spectra were plotted with a graph-
ical display tool and two operators scanned through
the spectra and marked the peaks that corresponded to
mono-isotopic peaks. The two operators spent between
20 and 45 min on each spectrum, listing the peaks that
they visually deemed to be mono-isotopic peptide peaks.

(b) The second was a biased manual peak picking done with
the help of the Voyager 5 Data Explorer software. A
third human operator tried different software parameter
settings for each spectrum and selected an optimal set
of parameters for each spectrum. This peak picking was
considered typical for a pharmaceutical lab. The oper-
ator selected the peak lists by varying the absolute in-
tensity parameters for each spectrum and adjusting the
parameters to allow detection of small but significant
peaks while excluding noise and background peaks. Ad-
ditional mass ranges were inserted with different param-
eter settings when needed.

(c) The third method was an industry standard “automated”
peak picking where a human operator selected a sin-
gle compromise set of parameters for the Voyager 5
Data Explorer software for all 38 spectra (the same
human operator as in the biased manual peak picking
described above). The operator tried several parameter
settings with the Data Explorer software and the best
overall results were achieved using an absolute intensity
peak threshold. The subjectively best (compared to the
biased manual peak picking) compromise performance
was achieved using the following settings for all spectra:
use advance settings, set range 1= m/z 750–1100 and
minimum intensity= 500, set range 2= m/z1100–3500
and minimum intensity= 200.

(d) The fourth method was a Pepex “automated” peak pick-
ing. A single set of Pepex parameters was chosen that
matched the unbiased peak picking, (a) above, as well as
possible. The subjectively, as judged by a human opera-
tor, best compromise performance was achieved using a

relative peak intensity threshold, a signal/noise thresh-
old of 1.5, and a noise density of 0.0005.

These four user-dependent peak picking methods
were selected to provide relevant comparisons for the
user-independent peak picking. The two manual methods,
(a) and (b), represent how well a human operator can do
when being very thorough (the unbiased peak picking)
and when working quickly with the aid of a peak picking
software (the biased peak picking). The two “automated”
methods, (c) and (d), represent how good a specific peak
picking tool can be at automatic peak picking when tuned
by human operators. It is important to note, however, that
both human operators who tuned the peak picking software
were aware of a “true” answer (the biased and the unbi-
ased manually picked peak lists) and the results with these
automatically picked peak lists are therefore likely to be
somewhat positively biased.

3.2. Identifying and removing contamination peaks

Contamination peaks were identified and removed before
the peak lists were submitted to Mascot[6] for protein iden-
tification. All gel pieces included in this study were pro-
duced at the same time and it was therefore reasonable to
expect similar contamination in essentially all samples. The
contamination peaks were defined as those peaks that oc-
curred unreasonably often in the spectra, using the algorithm
described by Levander et al.[18]: peaks with signal/noise
ratios above 1.5 were picked from all 38 spectra and it was
noted how often an individual peak occurred. For instance,
if a peak occurred 38 times then it occurred 38/38 = 100%
of the time; this was the case for, e.g. the trypsin 842.5 Da
peak. The number of occurrences for each peak was then
compared to the chance probability for a peak with the ob-
served mass to occur several times in the experiment, based
on the distribution of peptide masses in protein databases. If
the observed number of observations exceeded the chance
probability by more than two standard deviations, then the
observed peak was labeled as a background peak. This re-
sulted in 37 background peaks, many of which matched to
(methylated) peptides from pig trypsin and human keratin.

3.3. Database protein scoring

All user-dependent peak sets were scored against Swiss-
Prot, version 31 October 2001, using the Mascot tool from
Matrix Science[6]. The settings for the Mascot searches
were: mass tolerance, 50 ppm; missed cleavages, 1; fixed
modifications, carbamidomethylation of cysteine; variable
modifications, methionine oxidation; species, all.

3.4. Combining results from multiple peak lists

There is no such thing as a “true” peak list: different
human experts pick different peak lists and automatic peak



212 T. Rögnvaldsson et al. / J. Chromatogr. B 807 (2004) 209–215

detection tools pick different peaks depending on the param-
eter settings. It should therefore be a good idea to combine
results from several users or from several parameter settings;
effectively integrating over parameter values so that the
result becomes user-independent (i.e. no human operator is
needed to tune the software). To test this idea, we varied the
spectrum noise level estimation and the signal-to-noise ratio
of accepted peaks. In the Pepex software this was done by
varying the relative noise density parameter with the two val-
ues (0.0005, 0.001) and the signal-to-noise cut off with the
seven values (1, 1.5, 2, 2.5, 3, 3.5, 4), respectively, yielding
a total of 2×7 = 14 peak sets for each spectrum. The num-
ber of peaks in the peak sets then varied between 0 and 450
(after contamination peaks had been removed). These peak
sets were then submitted individually to the Mascot protein
identification tool and combined using a logistic perceptron
[19]. The combined protein identification success was then
compared to the user-dependent peak sets described above.

The logistic perceptron is a single layer neural network
with a logistic output unit, i.e. it is a function that takes a
number of input variablesx1, x2, . . . , xm, and outputs a num-
bery between 0 and 1. The logistic perceptron’s functional
form is

y(x) = [1 + exp(v0 + v1x1 + v2x2 + · · · + vmxm)]−1

wherev0, v1, v2, . . . , vm are free parameters.
The logistic perceptron was trained to recognize a cor-

rect match and output a high value (i.e. close to 1) for a
correct protein identity and a low value (i.e. close to 0) for
an incorrect protein identity. This was done is the following
way. A human expert listed all the correct protein identities
(this is described later in this paper) and all other reported
protein identities were labeled incorrect. The desired output
for correct (true) protein identities was set to one and the
desired output for incorrect (false) protein identities was set
to zero. The perceptron then received information about the
size of the database protein, the Mascot scores for the 14
peak sets, and the query lengths for the 14 peak sets (a total
of 29 inputs). That is, the input variables where:x1 is the
size of matched database protein,xk+1 the Mascot score for
peak list numberk, andxk+15 the number of peaks in peak
list numberk. The protein identities reported by Mascot on
37 of the 38 spectra were then used to train the perceptron,
meaning that the parametersv0, v1, v2, . . . , vm were tuned
so that the sum square error

E =
∑

n

[y(x(n)) − d(n)]2

was minimized (d(n) denotes the desired output value, zero
or one, for inputsx(n)). The resilient propagation method
[20] with 300 weight updates was used for the minimiza-
tion; this method is similar to the more commonly known
gradient descent method. The trained perceptron was then
used to categorize the reported protein identities on the 38th
spectrum, which it had not seen during training, as being ei-
ther correct or incorrect. This procedure was then repeated

38 times so that out-of-sample judgments could be made by
the perceptron on all the 38 spectra (this procedure is often
referred to as leave-one-out cross-validation).

The described logistic perceptron method corresponds to
a pattern recognition approach to the protein identification
problem. The logistic perceptron is trained to recognize the
characteristics for a correct protein identity when several dif-
ferent peak sets are used. The logistic perceptron is similar,
but not identical, to the classical logistic regression model
[21], and the logistic perceptron’s output can be interpreted
as an estimate of the posterior probabilityp(correct|x). That
is, the probability that the reported protein identity is cor-
rect, given the observationx. This output can be further
processed; one can require the estimated probability to be
higher than a given threshold, e.g. 0.7. A threshold of 0.5
was used in the work described here.

4. Results

4.1. Similarities and differences between user-dependent
peak lists

Some general observations, illustrated inFig. 2, could be
made for manual and “automatic” peak sets. First of all,
the human operator was an inconsistent peak picker and
the unbiased manual peak sets did not agree completely
with the biased peak picking. Furthermore, there were sig-
nificant differences between the peak sets that were picked
“automatically”.

The peaks picked by the operator by manually tuning
Data Explorer (biased peak picking) were compared to peak
sets picked by the same individual 2 years earlier on the

Fig. 2. Venn diagrams illustrating the agreement and differences between
the different peak sets. The “biased manual I” and “biased manual II”
refers to the two different occasions when the biased manual peak picking
was done; “biased manual I” is the older of the peak sets. The peak sets
are explained in the text.
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same spectra, also using Data Explorer. The new peak lists
were on average about twice as big as the old ones but the
smaller peak lists were not complete subsets of the larger
peak lists. On average, only 56% of the new peaks matched
the old peaks for the same spectrum and 92% of the smaller
peak sets matched the larger peak sets for the same spectra.
Thus, the operator disagreed with himself on at least one
out of every 10 peaks even though the same peak detection
software was used on both occasions. This was because the
operator had changed his opinion on how peaks should be
picked. The operator had prioritized avoiding false positive
peaks in the 2-year-old lists, whereas priority was given
to avoiding false negatives in the new peak lists; a “false
positive” peak denotes a peak that is not in the spectrum
but that is nevertheless picked by the software, and a “false
negative” peak is a peak that is in the spectrum but that is
missed by the software. Both priorities are reasonable and
the observed difference between the peak lists illustrates how
subjective manual peak picking is.

The unbiased manual peak lists contained on average
about twice as many peaks as the biased manual peak lists.
On average 43% of the unbiased manual peaks agreed with
the biased peaks, and 81% of the biased peaks agreed with
the unbiased peaks. Thus, the persons selecting peaks in an
unbiased way disagreed with the operator who used Data
Explorer on at least two in every 10 peaks.

The peak sets picked “automatically” by the Voyager 5
Data Explorer software were on average about half the size
of the biased manual peak lists selected by the operator.
Almost all peaks picked “automatically” by Data Explorer
agreed with the operator, which could be explained by the
fact that the operator used Data Explorer to select peaks.
It is clear that the operator preferred a conservative param-
eter setting for Data Explorer, leading to small peak sets.
The parameter setting for Pepex was, in comparison, much
less conservative and the peak lists were about 50% larger
than the peak lists selected by the operator but smaller than
the fully manual peak sets. On average, about 80% of the
operator’s peaks agreed with the Pepex peaks. The situation
is illustrated with Venn diagrams inFig. 2.

The subjectivity and uncertainty of peak picking is fur-
ther illustrated inFig. 3, where the different peak sets
are compared to a biased and an unbiased peak set us-
ing the efficiency and purity statistics. These are defined
as efficiency= (number of agreeing peaks)/(number of
peaks picked manually) and purity= (number of agreeing
peaks)/(number of peaks picked by automated software).
If the software finds all the peaks that were picked manu-
ally, then the efficiency equals one. If the software pick no
peaks that disagree with the manual peak list, then the pu-
rity equals one. In data mining literature, efficiency is often
referred to as “recall” and purity as “precision”. In medi-
cal literature, efficiency is called “sensitivity” and purity is
called “positive predictive value”.

Fig. 3 (lower part) illustrates how the operator has the
freedom to choose anything from a small peak set that is

Fig. 3. Illustration of the statistical nature of peak detection. The “manual”
peak picking referred to is the unbiased manual peak list, and the “human
expert” is the biased manual peak list. Each cross in the lower graphs
corresponds to one peak set (one parameter setting for the peak picking
algorithm), and the filled square marks the peak set achieved when the
best compromise set of parameters were used for the Pepex peak picking
algorithm. Each pair of purity/efficiency bars in the upper right graph
corresponds to one cross in the lower left graph (the bar graph only shows
some of the peak sets, in order to make the bar graph easier to read).
More explanation is given in the text.

pure but inefficient to a peak set that is impure but efficient.
However, there is no rule that tells which peak set is bet-
ter than the others and peak picking is therefore a process
where one should use more than one parameter setting to
get stable and reliable results. The top left panel inFig. 3
shows the number of correctly (i.e. agreeing with the man-
ually picked peaks) and incorrectly (i.e. not agreeing with
the manually picked peaks) picked peaks in a single spec-
trum as a function of a user specified signal-to-noise thresh-
old. A high signal-to-noise threshold means making few
“mistakes” but also missing potentially informative peaks.
The top right panel inFig. 3shows the corresponding purity
and efficiency numbers (the unbiased manual peak list con-
tained 87 peaks in this case). The lower left panel inFig. 3
shows the (efficiency, purity) pairs when a correct peak is
defined by the unbiased manual peak set. The lower right
panel inFig. 3shows the (efficiency, purity) pairs plotted in
an efficiency–purity graph when a correct peak is defined by
the biased manual peak set. The filled square marks the par-
ticular peak set that was used in the automated Pepex peak
picking. The fixed parameters for Pepex were selected to be
as close (on average for all spectra) as possible to the upper
right corner when comparing against the unbiased manual
peak set.

It should be evident fromFig. 3 that there exists no such
thing as an objectively optimal set of parameters. The op-
timality of parameters depends very much on who defines
the correct peaks.
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Fig. 4. The protein identification results when using the different peak
detection strategies and weighting strategies. The “Pc” label refers to
the logistic perceptron approach where scores from several peak lists are
combined. The other labels refer to the listing of different peak picking
strategies in the text. The results are discussed in more detail in the text.

4.2. Protein identification efficiency

The number of correct and false protein identifications
was compared for the different peak picking strategies and
for the strategy where results were combined. A protein
identity was deemed to be correct by looking at the size
and pI of the protein compared to the spot position on the
gel, the mass error of matched peaks versus theoretical pep-
tide masses, the protein being of human origin, and the se-
quence coverage of the protein by the matching peptides.
All these different aspects were judged subjectively by an
experienced operator. A false hit was defined as a reported
significant identity that deviated from one or more of the
expected values mentioned above. Proteins with more than
1600 residues were ignored, because of the poor database
statistics for large proteins, and obvious contamination pro-
teins (keratins) were ignored.

The protein identification results are summarized in
Fig. 4. The best “automatic” result was achieved using the
user-dependent Pepex peak set and the worst “automatic”
result was achieved with the user-dependent Data Explorer
peak set. This does probably not reflect any quality differ-
ence between the peak picking algorithms. It is rather a
consequence of how the parameters were set for the two
tools. The difference in result illustrates how difficult/risky
it is to manually tune peak picking software and select a
single set of parameters.

The unbiased manual peak sets (a) produced two false
hits, of which one was of human origin. The biased manual
peak sets (b) produced one false hit, which was a protein
of non-human origin. The user-dependent “automatic” Data
Explorer peak sets (c) produced two false hits, none of

human origin, and the user-dependent “automatic” Pepex
peak sets (d) produced no false hit. These “automatic” re-
sults are likely to be overly optimistic since the parameters
of the peak picking algorithms were set based on knowledge
from the manual peak picking.

The logistic perceptron (Pc) gave six false hits. One of
the false hits (for a spectrum classified as “strong”) was on
an extremely short protein (26 residues) of non-human ori-
gin. In one case, the perceptron gave as top hit a protein
that was not reported as a significant hit by Mascot when
any of the other peak sets were used. This protein (human
HSP 90) was, however, judged as correct by the experi-
enced operator based on molecular weight, pI and peptide
mass precision. In this particular case, the perceptron also
reported three other proteins of non-human origin as hits
(i.e. this spectrum accounted for half of the false hits pro-
duced by the perceptron). If the decision threshold for the
perceptron was increased from 0.5 to 0.7 then the number
of false hits decreased by four and the number of correctly
identified proteins decreased by only one. The perceptron
was thus more uncertain about false hits than about correct
hits.

The sequence coverage varied between the peak sets. The
average sequence coverage with the automatic Data Ex-
plorer peak set was 25%. The average sequence coverage
with the automatic Pepex peak set was 32%. The largest se-
quence coverage was achieved with the logistic perceptron
method; the average sequence coverage was here 45%, 1.5
times the average sequence coverage achieved by the human
operator (30%). This is of course not surprising since the
multiple peak lists method includes some very large peak
lists.

The time complexity varied much between methods. For
the biased manual peak picking the operator spent about
10–15 min per spectrum. The unbiased manual peak picking
took 20–45 min per spectrum. The automated Pepex runs
took about 3–5 s per spectrum (excluding the time devoted
to parameter tuning) and the automated Data Explorer took
only a few seconds per spectrum (again excluding the time
for parameter tuning). The Mascot runs took 5–10 s per peak
list. A repeated search with 14 peak sets, using Pepex com-
bined with Mascot, took about 2 min per spectrum, without
the need for any manual parameter tuning.

5. Conclusions

We have suggested a method for combining results from
several peak sets in peptide mass fingerprint experiments.
The motivation being that one should not be satisfied with
just a single parameter setting for a peak picking software
but combine information from several peak sets that con-
tain information about both strong and weak peaks in the
spectrum. The suggested method provides completely auto-
matic and reproducible peak picking and achieves at least as
good protein identification as manual operation by a human
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operator using a commercial peak selection tool. Combining
several peak sets in this way removes the arbitrariness of
using a single parameter setting for a peak picking software.
This is important since manual tuning of peak detection
software turned out, in our experiments, to produce protein
identification performance that fell anywhere between poor
and excellent.

The largest number of proteins was found using multi-
ple peak sets combined with the logistic perceptron. This
method even found proteins that had low Mascot score but
where an experienced operator believed the identification
to be correct (albeit at the price of three false positives);
this is remarkable and shows that the logistic perceptron
was able to make judgments that reflected the human opera-
tor. The overall best protein identification, maximizing cor-
rect hits and minimizing false hits, was achieved with the
tuned Pepex algorithm. However, this required considerable
time in the tuning process and the end result is biased; it
is questionable whether this could be repeated at a differ-
ent laboratory by other people since parameter tuning is so
subjective. User-independent methods that employ several
peak sets must therefore be considered better in the long
run.

The annotation hit-rate was essentially equally good
for all methods on high-abundant proteins or proteins
with strong MALDI response (Fig. 4) whereas the hit-rate
on low-abundant protein spots, or proteins with weak
MALDI response, from the 2D-gels was 50% at best
and 25% at worst. The best yield on weak spectra was
achieved using the logistic perceptron strategy with multi-
ple peak sets and the worst yield was achieved by using a
user-dependent strategy with a single peak set from soft-
ware tuned by a human operator (Fig. 4). This difference
can be critical since valuable new biological and pharma-
cological information is likely to come from the group
of proteins with weak MALDI response and/or low abun-
dance.

The particular strengths of the proposed method are
its objectivity, automation, and improved sensitivity for
weak spectra. The method can be completely automated, it

requires no subjective parameter tuning, and it is very suc-
cessful at identifying proteins. These are all essential prop-
erties for a high-throughput protein identification method.
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